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ABSTRACT

Petri nets are presented as a tecnnique for representing

computer systems naving asynchronous, concurrent operations.

Tne structure of tne nets are analyzed as a means of

demonstrating tne correctness of tne modeled system. Tne

execution of tne petri net is considered as a stoctiastic

process, allowing analysis of tne model as a queuelng

networt system by transforming tne petri net into its

stocnastic equivalent net. It is snown tnat product form

solutions for tne state probabilities exist for tne class of

state macnine decomposable nets but not for tne more general

class of consistent petri nets. Solutions for tne

corresponding open systems are derived by extending tne

petri net model to include arbitrary sources and sinfcs.
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I. INTRODUCTION

With tne explosion in numbers and types of computer

hardware components witnessed in tne past few years,

computer system design nas become an extremely complex task.

Cox has observed [lj :

"Today's computers are among tne most complex man made
systems in existence today. The development of such
systems represents a significant commitment of physical
and mental resources. This cost can only be justified if
these computing devices serve their intended purpose
the efficient processing of data in response to specific
needs."

If we are to make effective use of these development

resources, it is necessary to provide the system designer

with tools which allow him or her to create and analyze

sophisticated system designs.

Several trends have emerged which have accelerated the

search for new and better design tools. The low cost of LSI

and VLSI hardware components coupled with technological

advances in digital communications has led to the evolution

of a wide variety of multiprocessor systems, distributed

computing applications, and computer networks. As early as

1976, Anderson and Jenson [2j identified 27 different

networking schemes being used in prototype or actual

systems. When one considers the number of communication

protocols and transmission media which have been proposed or
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implemented, tne number of variables involved in trie

hardware design process becomes truly awesome.

Likewise, innovations in system software nave given rise

to such concepts as distributed operating systems, on-line

data bases, and interactive programming, to name a few.

Kobayasni and Konneim [3J nave noted tnat

:

"With the increasing complexity and sophist icat ion of
computer communication systems, modeling and performance
evaluation [empbasis their's] are becoming critical
fssues in the design and operation of such systems. It
is apparent that for a cost-effective design we must be

equipped with systematic methods of predicting
quantitative relations between system resource
parameters, system workloads, and measures of system
performance."

Several characteristics of these systems may be

identified which determine what types of models are

appropriate for performance evaluation. A central concept is

that of concurrent or parallel processing. Each node in a

network, or processor in a multiprocessing system, is

capable of independent computation. At the same time, system

or global resources such as memory and communication links

must be shared by the various processing elements. This

results in enforced cooperation between otherwise

independent processes.

Since most resources in computing systems tend to be

scarce in relation to the demands on them, contention exists

between resource users which must be arbitrated. This

problem is complicated by the observation that demands in

computer systems are not constant. For example, in computer





communication networks empirical evidence snows that demands

tend to be bursty and sporadic. As a result, resource

demands must be viewed as stochastic in nature and system

models must be capable of expressing the probabilistic

elements of the modeled system.

The uncertainty in resource demand results in two

phenomena which must be considered in performance modelin?.

Tne first is tne creation of queues of users which require

service but must wait for resource availability. The second,

and interrelated, phenomenon is the delay which users

experience while waiting for resources and while being

served. The field of queueing theory has attempted to answer

these questions and others concerning tne probabilistic

properties of systems in both analytic and simulation

models.

One purpose of performance prediction modeling is to

analyze system designs in terms of performance measures or

indices. Ferrari [4j has identified three performance index

classes: productivity, responsiveness, and utilization. A

number of specific measurements may be computed from the

model to express tnese indices — throughput, waiting time,

and utilization for example.

A second purpose of performance modeling is to verify

proper system operation. It is important to ensure tnat the

underlying system is deadlock-free, or at least to predict

the circumstances under which deadlock could occur. In
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addition, it may be necessary to demonstrate that the system

enforces synchronization or mutual exclusion among elements

of the system.

It is not sufficient for a model to be capable of

providing answers to these questions. The model must also be

amenable to validation; that is, the determination of now

accurately the predicted results conform to the modeled

system. This may be particularly difficult to accomplish

when the actual system does not exist or is otherwise not

available. Finally, it is desirable that the model be robust

in order that its domain of validity extend over as large a

range of systems as possible.

Performance models can be divided into two separate

types — simulation and analytical. A simulation may taice

various forms; however, the form most often associated with

performance modeling is computer based, discrete event

simulation. This model consists of a program which describes

the state of the modeled system in terms of system entities

and their attributes at each point in time. Attributes are

varied as a result of the instantaneous occurrence of events

in the system. The model then tracks the changes in

attributes over time to determine the required performance

measures. Simulations suffer from several shortcomings. To

accurately model the system, the programs must be complex

resulting in a significant software engineering problem; tne

model must be carefully designed and verified to ensure

9





proper operation. Because of the probabilistic nature of tne

system, it is necessary to operate the simulation for

numerous runs and over a large span of simuation time to

ensure statistically meaningful results. This can lead to

significant computing costs for the simulation. Finally, if

the system parameters are to be changed, or elements of the

system altered, it is necessary to chance the simulation and

rerun it. Once again, the costs of software modification and

model operation must be met. This can malce it difficult to

generalize or abstract from the simulation.

An alternative to simulation modeling is analytic

modeling. In this method the system is expressed as a set of

mathematical equations. Determining the performance measures

for the system amounts to finding the appropriate solutions

to the system equations. Unfortunately, in many cases the

solutions are mathematically intractable or computationally

inefficient and require that simplifying assumptions be made

about the system. However, to quote from Kobayashi and

Konheim once again:

"Even when a decision is made for simulation, an
analytic solution, however crude it may he, can serve as

a guideline in narrowing down a range of system
configurations and parameters under which a simulation
runs. It also could save a considerable amount of

modeling efforts, by detecting possible errors
introduced in the design and implementation phases of a

simulation."

This tbesis investigates an approach to the analytic

modeling of computer systems based on using a
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graph-theoretic technique — petri nets — as a

representation for system elements and tneir interactions.

By analyzing the structure of a petri net model, it is

possible to answer a number of questions regarding tne

operation of tne modeled system. We snow that it is possible

to model tne stocnastic nature of computer systems by

extending tne petri net model to allow nondeterminism in the

net to be expressed in terms of probability distributions.

It is then possible to consider a petri net as an analog to

a queueing network system and therefore it is possible to

apply the Known methods of Marfcov analysis to the nets to

obtain analytic solutions for the system. The problem we

address in this thesis is the evaluation of nondeterministic

and stochastic petri nets using queueing theory techniques.

The solutions which result combine the structural properties

of petri nets with the capability for performance

prediction.

A. PETRI NETS AS A PERFORMANCE MODEL

Consider a simple computer system consisting of two

cooperatingt concurrent processes A and B running on

separate hardware. Process A is a producer, and process B is

a consumer of data. It is desired that a nandsnafre protocol

be implemented between the two processes (see Figure 1.1).

How might this be represented?

11





Figure 1.1 Communicating Processes
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One possibility is to list the events which must occur

during the nandsnafce process. Using this event list, we

could then determine what conditions must be satisfied for

each event to occur, and what changes In the system result

from that occurrence. This could be graphically displayed in

the following manner. Let the events be represented by a

bar, and the conditions by circles. For each event, draw a

directed arc from each circle (condition) which must hold

for the event to occur to the bar (event). Next, draw a

directed arc from the bar to each circle (condition) which

holds as a result of the occurrence of the event. Finally,

determine the initial state of the system by deciding which

conditions initially hold, and place a dot (tofcen) in a

circle for each holding of that condition. The resulting

graph is shown in Figure 1.2.

This graph is called the petri net model of the

communication protocol, after C. A. Petri who first studied

them in the 1950's [5] • Note that each event may have one or

more input conditions, and one or more output conditions. In

the language of petri nets, the events are called

transitions and the conditions are called places . The net

operates by moving tofcens around the net in accordance with

the firing rule, which states that an event may occur when

each Input place to the event has a tofcen .assigned to it.

The transition fires by removing a toJcen from each input

place and depositing one in each output place. The state of

13
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Figure 1.2 Petri net model of a communication protocol
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each place is determined by the number of tokens in it. Tne

system state, or marking, is then represented by a vector

whose elements are the state of each place in the net.

One feature of the petri net model is that the tokens

can represent either control flow or data flow; the

difference purely lies in how the net is interpreted by the

designer. Tnis nas led to some difficulty in modeling

data-dependent events. Several attempts have been Tiade to

overcome this problem by extending the definition to include

specialized places such as conditional places, which cause

transitions to fire in different ways depending on whether

or not the condition place holds a token. In either case tne

token content of the conditional place is not changed by tne

firing. An example of this extension is tne Macro E-Net Noe

and Nutt have proposed [6], In a slightly different

extension, inhibitor places were added to the net [7J which

prevent firing of a transition when the place nolds a token.

A second feature of petri nets is that the firing of

transitions is inherently asynchronous and concurrent — for

example in Figure 1.2 the <process data> events for both

processes can fire independently of each other. When

necessary, the operation of concurrent processes can be

coordinated through the use of multiple input places; the

<receive message> event is an example of this type of

interaction.
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The basic petri net, as depicted here, does not attempt

to model the time required for execution. Extensions to the

theory which account for execution times were investigated

by Ramcnandani [8] and others. This technique allows for

analysis of the time-related operation of the net.

1. Analysis of petri nets

Petri nets may be analyzed in a number of ways. Much

of the worK, particularly at MIT, has been based on using

tecnniques from automata theory and investigating the nets

as formal language generators [9, 10J . Using this method,

HacK has proven a number of decidability questions about the

possible configurations (system states) of the net. Other

wort [11,12,13] has emphasized the graph theoretical

properties of the nets in analyzing their structure. This

methodology has led to the identification of several

subclasses of petri nets based on special structural

characteristics .

Simulations Dased on petri net models have been widely

used in analyzing nardware designs of concurrent systems and

data flow computing. Typically, the system to be modeled is

reduced to its petri net equivalent which then serves as

input to the simulator. The simulator then executes tne

petri net in much the same manner as a conventional discrete

event simulation.
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2. Uses and Limitations of the Petri Net Approach

Petri nets nave been used to model a large number of

concurrent software and hardware systems. In hardware

design,, they have been used as a basis for developing speed

independent logic [14,15] by proving the conditions for

which circuits are free of races when operating in

fundamental mode. More ambitious applications have involved

the analysis of multiprocessor systems such as the CDC 6600

[16,17], IBM 360/91 [18], Amdahl 470 V/6 [17], and US Navy

SEAFIRE weapons system [19] . Most of these applications have

involved simulation modeling due to tne complexity of the

designs. A slirhtly different approach to hardware design

has been the design by step-wise refinement method. Valette

[20] has shown that single transitions could be replaced by

more complex structures when certain conditions were met.

Using this method, each component of the system can be

separately analyzed and formed into an independent structure

he called a well-formed blocfc. By substituting these blocfcs

for transitions in tne net, it is possible to retain the

properties of the original net. This hierarchical structure

also simplifies the problem of understanding the operation

of the net. Figure 1.3 shows how this might be accomplished.

Petri net models have been used in the analysis of

software designs as well. For example, they nave been used

to verify the correctness of communication protocols [21]

.

Operating system synchronization primatives such as P and V

17





[22] may be modeled using simple net structures. Figure 1.4

gives an example of now mutual exclusion could be

represented. The contents of place S is the semapnore value

for the protected resource (in this case 1). Each process

which requires exclusive use of the resource has an event

P(S) which may fire only if the semaphore is non-zero.

Firing of tne corresponding V(S) event returns tne token to

the semaphore. The significant advantage of using a petri

net is that mutual exclusion can be proven by showing that

only one P(S) event can be fired until the corresponding

V(S ) event occurs

.

lest the reader get the impression that petri nets are

the ultimate modeling tool, it should be noted that petri

nets have limitations in their modeling ability. Tne lack: of

a mechanism for handling data dependent events as described

earlier has made it difficult to model actual systems using

deterministic nets. A second related limitation is the use

of deterministic transition firing times in the analysis of

timed nets. In our opinion, the restriction of petri nets to

deterministic modeling has been responsible for the lack of

attention given to them in recent years.

Our view of petri nets emphasises the non-deterministic

modeling capabilities of the nets. We consider the

transitions in the net to be service centers which operate

according to some service time distribution. In this

approach, the places can represent queues of tokens awaiting

18
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PROCESS 1 PROCESS 2

Figure 1.4 Petri net modelinff of mutual exclusion usine
Dijlcstra's P and V (from Peterson [23j ) .
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service. By regarding nets in tnis manner, the Known results

of queueing network tneory may be applied to tne analysis

while maintaining tne benefits of tne underlying structure

of tne nets. We feel tnat tnis will result in a better

modeling tool for analyzing concurrent systems.

B. REVIEW OF RELATED WORK

Tne basis for concurrent system modeling has largely

been derived fron two papers by Karp and Miller [24,25J .

These papers proposed several models for concurrent systems.

Computation graphs are simular to petri nets except that

places were modeled as directed arcs between events and

labeled with a four-tuple defined as:

A — tne initial number of words in a FIFO queue

U — the number of words added to the queue as a result

of the firing of tne input transition

W — the number of words removed from the queue as a

result of the firing of the output transition

T — a threshold number of words (perhaps greater than

W) required for the output transition to fire.

Karp and Miller established the requirements for several

important concepts including liveness and boundedness wnicn

we discuss in greater detail later.

Reiter [26J extended computation graphs by adding a

fifth element tau to the directed arc labeling which

represented the execution time required for tne output

21





transition to process the V data words w&en firing. Reiter

tnen determined a metnod for finding possible sequences of

firings of transitions. For cyclic graphs, ne found a lower

bound for tne cycle period of tne grapn. Computation grapns

nave been used in the performance analysis of data flow

processors [27]

.

The second paper by Karp and Miller [25] investigated

parallel program schemata and vector addition systems. A

parallel program scnema nodeled parallelism in programs by

establishing computation states and rules for state

transitions. Tne concept of FORK and JOIN which nave been

applied to data flow and other MIMD architectures was

developed to express the creation of concurrent processes

from a sequential process, and the combination of concurrent

processes into a sequential process. The equivalence of

petri nets, computation grapns, and parallel program

schemata was s&own by Miller [23J

.

Most of the research on petri nets in the United States

has been conducted at MIT. Commoner and Holt [ll,12j studied

a deterministic subclass of petri nets Known as marfced

grapns and proved several theorems regarding their system

state spaces. A more general subclass of deterministic nets,

persistent nets, was studied by Landweber and Robertson [13]

who proved that the theorems regarding marked graphs were

applicable to this class. A final deterministic subclass

referred to as state macnine decomposable was investigated
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by Ramchandani . In addition, Ramchandani analyzed this

subclass with deterministic transition firing- times to

derive expressions for the minimum net cycle period in a

manner analogous to tnat Reiter used for computation grapns.

Other classes of petri nets have been defined which

improve the tractability of tne problem of finding solutions

to performance measures while retaining characteristics

which are desired in the modeled systems. In particular,

live, bounded, conservative, and consistent nets nave

received the most attention. The properties of these classes

will be examined in detail in the next section.

Our worfc extends this previous wort by focusing on the

broader class of nondeterministic, consistent petri nets

which appears to be the most general class for which

solutions to performance questions may be found. While

nondetermini sm increases the difficulty of dealing with

petri nets analytically, much of the previous wori on petri

net structure remains pertinent to this class.

Nondeterminism allows the net to represent different types

of data, for example, by regarding the data type or

transition firing time as a random variable. To analyze the

performance of nondeterministic petri nets, we consider tnem

as analogs to queueing network models. The basis for

analysis of these models is the classic worfc of Jackson [29j

for the case of open systems, and Gordon and Newell [30J for

closed systems. Both of these models relied upon poisson
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arrival processes, first come, first serve (FCFS) queueing

discipline, and exponential service departure processes to

ensure tnat tne Marfcov property was met and allowed the

system state probabilities to be expressed as tne product of

tne marginal state probabilities. Tnis quality is tnown as

the product form solution and is required for

computationally efficient solutions. Most of the recent woric

in queuing network tneory nas attempted to find product form

solutions for more general systems. Jaclcson [31] considered

systems wnere tne arrival rates and service rates were

functions of the queue lengths (states) at the various

nodes. Bastett et al. [32J extended this to open and closed

networks where customers were of different classes and tne

queueing discipline was FCFS, no queueing, and last come,

first serve with preemptive resume (LCFS-PR). All these

cases were shown to have product form solutions. In

addition, they showed that a condition Known as local

balance was a necessary condition for product form

solutions.

Chandy et al. [33J considered the question of local

balance in more detail and developed the more general notion

of station balance which was also shown to be necessary and

sufficient for product form solutions if non-exponential

diff erentiable service distributions were used. In addition

they proved that arbitrary service distributions satisfied

station balance if processor sharing (PS) or LCFS-FR
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disciplines were used. In tne case of exponential service

ti*ne distributions for all service classes, they showed that

FCFS and priority disciplines resulted in station balance

being met. This result has been extended to any *ort

conserving discipline.

In summary, it has been shown that product form

solutions exist for queueing networks with tne following

properties:

1. For exponential service, any worfc conserving queueing

discipline may be used.

2. For PS and LCFS-PR disciplines, any dif ferentiable

service distribution may be used.

3. The solutions do not depend on the routing used for

the customers.

C. OUTLINE OF SUCCEEDING SECTIONS

In Section II, we present the formal definitions of

petri nets and derive several useful properties. The state

space — the set of system states the net may occupy — is

determined by constructing the reachability set of the petri

net. The conditions under which the state space is finite

and recurrent are then considered. It is shown that nets

with certain structural characteristics give rise to tnese

restricted state spaces. In particular, the classes of

marfced grapns, state machines, and consistent nets are

considered because of their relation to realizaole systems.
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In Section III we turn to nets witn timed events. The

case of deterministic routine- and transition time is first

considered. Next, tne (probabilistic) class of state

machines with nondeterministic routine and exponential

transition times is examined. It is shown that for the class

of state machine decomposable nets it is possible to

transform the net into a stochastic equivalent net which is

analogous to a closed queueing network. For this class of

nets a product form solution for the state probabilities is

derived.

Next, petri nets which allow external sinfcs and sources

are defined. Again, it is shown that tne stochastic

equivalent nets may be analyzed as queueing networks; in

this case an open system.

Finally, the class of consistent petri nets with

exponential firing times is considered and it is shown that

product form does not exist for this class of nets.
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J I. PETRI NET THEORY

In tills section the relevant petri net theory is

presented. Much of the wors follows tnat of Commoner and

Holt [11], Kraft and Miller [25] , and Ramchandani [e] . Tre

notation used is primarily tnat of Peterson [23J

.

The petri net was defined informally in the preceding

section as a means for representing related events and tneir

conditions in systems. We now formalize this notion by

defining the petri net N and its directed graph

representation.

Definition 2.1 N = <P,T,I,0>

where

? {p,« ! Pj is a place in tne net}

T = {tj ! t; is a ^rjnsitlon in the net}

I : (PYT) —>ts| sucn tnat if p t
is an input place

to tj , I(p t',tj) 2l 1 and otherwise

: (pVt) —>N sucn that if p^ is an output place

to tj , 0(p
£
',t;) £. 1 and otherwise

with the requirement that Vt
t
* € T 3p,- »P* € p i

Kpy .t; )MA OCp^.t^ ) f and VPj € P

I(py,t; ) > ==> 0( P j
,l

L ) =0

We further define the following sets:

•t; = ivj ! KP; »W) > >
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t<« = {pj i 0(pj f li) > 0} wnere ^ € T /\ py 6 P

and likewise:

*Vj - {t£ ! 0(pj ,t;) > 0}

P/» * lt
t
-

! Up; ,t
c

) > 0> where t £ € T A Pj € P

These sets are referred to as tue input and output sets,

respectively. Note that the definitions of tne functions I

and require that:

Vti € T, »t£ t<P fttp t(p A «t
4
« (Jt£# =

<J>

The set of places represents tne conditions in our informal

model, and the set of transitions represents the events. The

input and output functions specify the preconditions for an

event to occur and the results of the event occurrence.

Corresponding to each petri net we define a bipartite,

directed grapn as follows:

Vp,; P t
' € P draw a circle representing a place

Vt^ tt € T draw a vertical tar representing a transition

Vt,: ,p; if p.- 6 *t£ draw a directed arc from pj to t^

Vt; ,p; if P;£t£« draw a directed arc from t^ to p,<

We will use the notions of petri net and petri net graph

interchangibly (since they are equivalent).

Example 1.

Consider tne following petri net N = <P,T,I,0> with

P * { P, » P2 » P3 » P« » Py » P* • P7 >

T i tj § tx , t^ , t^ , Xtg j

let n * If) and m - [t^ . Then I and may he
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represented by tne n X ti incidence matrices:

h •

1 1

1

1 1

1

1

1

1

1 1

1

1

1

where Cr i,j » Kp
t
-,t;)

and C £,j = 0(p
£
,tj )

The corresponding petri net graph is shown in Figure 2.1.

If we associate with each place in a petri net N a

non-negative integer marking function jU, , we tiave the

following definition of a marked petri net M:

Definition 2.2 k marked Petri net M <P,T,1 ,0, ]LL>

where P,T,I,0 are defined as before and

jLU P —>N

Each function julk
defines a marking of the net. In graph

notation the petri net graph is extended to a marked petri

net grapn by adding tokens to places as follows:

Vp t
- € p » lf M-r(Pi')

= n then place n tokens (dots) on

place p^

.

Figure 2.2 shows a possible marking for the petri net of

Bxample 1. Clearly a (countably) infinite number of possible

markings exist for any petri net. This marking represents

the (possibly multiple) holdings of conditions at
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Figure 2.1. Petri net grapn
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Figure 2.2. Marked Petri net grapn
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some instant of execution and may be viewed as a description

of the state of the net.

Definition 2.3 k transition t is enabled iff

VP/ Pj € *t£ ==> (X(P;) ^ KPj.t^)

For eacn marlcing jllk we can define tne enabling set SR as

follows :

Definition 2.4 Tne enabling set S^^C T = it; i
t^r is

enabled hy marking ll^}.

In our graph notation, a transition is enabled if eacn arc

directed into the transition has a toiten in its originating

place. Referring to Figure 2.2, it will be seen that t,, ta ,

and t4 are enabled and therefore S^ - {t, , t 2 ,t^ }.

Transition tg is not enabled since there is no tofcen in

place pg. corresponding to the arc p5 —> t^.

An enabled transition may fire to create a new marking.

That is, we define a function:

Definition 2.5 k firing function for a marked net M is

F :)LL X s —> M' suca taat F((Xj(Pj),t^) = jLL^Cpj )
-

Hp/ft;) * o(p
;
,t i

-) =fxKw

where pj € P A t t
- € S K.

F is defined for all markings for wnlcn the set SK is

non-empty. Continuing with the vector notation introduced

earlier for tne functions I and 0, we may denote eacn
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marfeinff jjLk as an n-element vector Uk where n =
| pj and

UK (i) "(LLK (p^) for i = 1,2,... ,n . Tnen F may be expressed

as:

F(UKt t t
') - Ok - C^c + C^*: where Cj L and CQ i are the ith

columns of tne Input and output incidence matrices

respectively.

Definition 2.6 Marting JUL. is directly reacnable fromjj^if

(t
t
« €S k ) A TifXfti) =fJ.f and is denoted as: jLLK->ft|.

Returning to our earlier example, transition t2 may be fired

(recall tnat tne enabling set Sk = {t, , lz , t+ } ). Ey

inspection of Figure 2.2, we specify tne vector for marking

w
2
1

1

(0

Tne resulting marking jJ.kH -

Hui " °K " h* * C<5«-
=

In grapn notation, one toten is removed from eacn place

having an arc directed into tne firing transition, and one

toten is added to eacn place having an arc directed from the

"»*
"

2 1 1

1 1

1 1
- + 1 = 1

1 1
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Figure 2.3. Petri net grapn after firing transition t2

34





firing transition. The resulting marking is shown in Figure

2.3.

Next we consider sequences of transition firings. Assume

tne following firings exist for some marfced net M:

Tnen we denote

fl^^l, =>/Xa or /jLa=>fX^

wnere tne firing sequence (jis some sequence of transition

firings ( t, ,t 2 , ... t t n ).

Definition 2.7 Marking is reachable from marking n,
fc

i*"f

M-k^Mm <=>3cr!M.K=>/^k. =Vm => . . . =>Mm

wnere <T= (t, ,t z ,...,t„)

If we form tne reflexive, transitive closure of tne

transition firing relation we nave tne following definition:

Definition 2.8 Given a marked net M, the reachability set

Q(M) is defined inductively as:

basis: jLL € Q

induction: /JL
fc € OA 3v € T ! jU k =>jU *.,==> jU.^, €

We are interested in determining the elements of the set

0(1). To do so, we must first formalize tne previously

introduced vector notation as a vector addition system.
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A. VECTOR ADDITION SYSTEMS

The concept of vector addition systems was first

explored by Karp and Miller [25J . This section is largely

derived from their wort.

A vector addition system is defined as a pair V = (d,W)

where d is an r-dimensional vector with i
t €j\f and w is a

finite set of r-dimensional vectors w, , wa , . .., w„ witn

Wj(l)€.I. The reacnability set R(V) for a vector addition

system is the set of vectors composed by adding elements of

the set V to d. That is

R(V) = {i J x » d + (v, + Wjj, + ... + w„ f A x(l)^0 }.

In addition, the following terminology is used:

The relation j£ is defined as

x < y <=> for i = 1,2,... ,r x(l) ^ y(i)

The symbol Cj is defined such that if n is any integer,

CO > n and n CJ =CJ.

The reachability set R(V) can be determined by constructing

tne corresponding reacnability tree T(7). Nodes in the tree

consist of r-dimensional vectors x,y,z,... with

x(i)6M CAcj>» for i = 1,2, ...,r . The relation < is defined

as x < y <=> a directed path exists from x to y in T(V). Let

d be the root of the tree. Descendants are constructed

recursively as follows:

1. If Ky and x * y, y is a leaf node.

2. Otnerwlse, construct successor nodes to y witn

vectors y w, , y + w2 , ... , y + w^ where for i =
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1,2,. ..,r y(i) + wj(i).>0. In addition, if tnere exists

a node z such that z •< y and z.<y w^ and z(J) <

y(J) + w^j) for some j, tnen y(j) + v;(j) =CJ.

To illustrate the construction of this tree consider the

following example from [25J

:

Example 2.

Let V * (d,W) wnere

d = [1,0,0,0,0]

V = { [-1,1,0,0,0J , [-1,0,0,1,0J , [0,-1,2,0,0] ,

[0,1,-1,0,0] , [0,0,0,-1,2] , [0,0,0,1,-1] >

Tne resulting reachability tree is shown in Figure 2.4

The following theorems from [25] allow us to answer

decidability questions about vector addition systems by

inspecting the reachability tree.

Theorem 2.1

Vx3y ! 7 €R(F) A (x^y) <=> z ! z € T(¥) A (x < z)

The proof, while straight foward, is rather lengthy and so

is not included here, but may be found in [25]

.

Theorem 2.2 For any vector addition system V, T(V) is

finite.

We first show the following two lemmas:

37





o
o

o
o

I
o
o
c\j

o

I

1
CVJ

*\

o
o
o
o

o

o
o
o

o
o
o
o

Figure 2.4. Reachability tree for Example 2
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Lemma 2.2.1

Let p, tP/jtP s » ...,pn , ... be an infinite sequence of

elements of (J\f UkJ) • Then there exists an infinite

subsequence pa ,p t ,p c f . .

.

,p a , . . . such tnat

V*£ Pi^PcS P*£« • • •

Proof. Construct an infinite subsequence by selecting

elements with first entries nondecreasing. From tnis

sequence, construct an infinite subsequence with second

entries nondecreasing, and so on.

Lemma 2.2.2 (K'dnig Infinity Lemma) Let T be a tree such

that each vertex has a finite number of successors and

there exists no infinite directed path from the root.

Then T is finite.

Proof. Since each vertex nas a finite number of

successors, let n be the maximum number of successors

for any node. Then tnere are at most n paths of lengtn 1

from the root, and if p is some node in the tree, there

are at most n paths of length 1 in the subtree naving p

as its root. Since no infinite patn exists by

assumption, let m be tne maximum path length. Then the

maximum number of nodes is n and T is finite.

Proof of theorem 2.2.

Assume there exists an infinite directed path from the

root of T(7) with node sequence p
(
,p 4 ,p 3 , . . . ,p n , . .

.
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Then by lemma 2.2.1, tnere exists a subsequence

P, »Pfc *PC » • •• »Pa « • • • *ltn P^< P4lL PC<L • • . P4< .... By

definition, if p« = p 4 tnen pb is a leaf node and

therefore the inequality is strict and

P* <P* <P 6 »»»<P* <••• • Again by definition, since

P*. <P*» Pb must have one more entry equal to CJ than p^.

Since tne number of entries is finite, this is

impossible and tnerefore no sucn infinite directed patn

exists. By lemma 2.2.2, T(V) is finite.

Using these theorems, it is possible to prove tne following

decidability theorems about the reachability set R(V):

Theorem 2.3 Given some finite n£j\f ,

Vx x 6 R(f) A (x(i)^ n) is decidable.

Proof. Construct T(V). By theorem 2.2 T(V) is finite.

Therefore Vy y€T(7)/\(y(i)$i) is decidable. By theorem

2.1 then, the question is decidable for R(7).

Theorem 2.4 Given some subset of tne entries for tne

r- dimensional vector addition system©£ {1 ,2, ... r}

,

Vx x€]sj
r
3y y € R(0 A (Vi i€ 0) ,

y(i) ^x(i) is decidable.

Proof. By the definition of T(7), this property holds iff

there exists a leaf node z such that Vi i€0 z (i) = CJ .
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Theorem 2.5 Siven a vector addition system R(V), it is

decidable wnetner R(V) is finite.

This result follows directly from theorem 2.4.

Theorem 2.5 Given two vector addition systems V and 7',

R(V).£r(7') is uniecidable.

Rabin's proof for this result appears in Baiter (.34] .

It snould he noted tnat the general reacnability problem

i.e., given x£j\f is x£R(V), is not determined by the

reachability tree. However, an algoritnm for solving tne

reachability problem has been found [35] . Therefore, the

reachability problem is decidable (although the

computational complexity is not Known).

This completes our study of vector addition systems. We

next demonstrate tne correspondence between vector addition

systems and marked petri nets. Let M = <P,T,I,0,{J> be an

arbitrary marlred petri net. The corresponding vector

addition system 7(d,W) may then be constructed in the

following manner:

let the dimension r = |p|

let d =jLL wnerejU-o is an initial marking for li

let W =* {wK | t; € T,pj€ P w
ft
(j) = 0(p Jt t

4
-

) - I(p
;
,t

(
) }

Note that |w[ = ]T and that elements of W reflect tne net

change in marfcing resulting from the firing of a transition
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in M. This leads to tne following tneorem relating tne

reachability sets of M and 7:

Theorem 2.7 O(M) = R(V)

Proof. i). Q(M)5R(7). Let x€R(M). Then
*, t> tj <n

]LJL
te
=>/J-

( =>fjLsl
=>. . .=>x . By definition of w K,

F(jULft
t
-) = ]U,+ wk and substituting for t, , t a , t 3 , ...,

t„ in the firing sequence JU.+ w, + wA + . . . wn x

Since /J.,= d by definition, x£R(V) .

ii). Q(M)£r(V). Let x £R(V). Then

x d + w, + w^ . . . wn .By the same reasoning as case

1, JUL =>JLL,=*> ... => x .

Using theorem 2.7 and the results for vector addition

systems we state the following:

Theorem 2.S Siyen a tiarfced petri net M with initial

markingjL^, , it is decidabie if the reachability set Q(M)

is finite.

Theorem 2.9 (riven a marfced petri net M with initial

marfcing jJL^ f it is decidabie if there exists *€J\{ , such

that for all elements of the reachability set Q(M),

each entry jJL( i )r-t.

Definition 2.9 A marlced petri net M is ft-bounded iff

3k !V|J. |U€Q(M) ==>ti.(i)5fc .
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Figure 2.5. Reachability tree for Example 1
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Definition 2.10 A marited petri net M is safe iff it is

fc-bounded with J£ 1 .

We complete this section by once again considering Example

1. Define tne corresponding vector addition system:

V = (d f W) with d = [2,1,1,0,0,0,0] as indicated by

Fieure 2.2.

V = { [-1,0,0,1,0,0,0] , [-1,-1,0,1,1,0,0J ,

[0,1,-1,0,-1,1,0] , [0,0,-1,0,0,0,1] ,

[0,0,1,0,0,0,-1] }

Next, construct tne corresponding reachability tree T(V).

The tree is siiown in Figure 2.5. By inspection, tne

reachability set R(V) is determined to be:

{ [2,1,1,0,0,0,0] , [1,1,1,1,0,0,0] , [1,0,1,1,1,0,0] ,

[2,1,0,0,0,0,1] , [0,1,1,2,0,0,0] , [0,0,1,2,1,0,0] ,

[1,1,0,1,0,0,1] , [1,1,0,1,0,1,0] , [1,0,0,1,1,0,1] ,

[0,1,0,2,0,0,1] , [0,0,0,2,1,0,1] , [0,1,0,2,0,1,0] ,

[0,0,0,2,1,1,0] }

This (finite) set is also Q(M) and therefore M is t-bounded

with t = 2.

B. SUBCLASSES OF MARKED PETRI NETS

The nets investigated in the preceding parts of this

section are more properly referred to as generalized petri

nets. Analysis of generalized nets has proved to be somewhat

intractable. As a result, several properties of petri nets

have been studied which define subclasses of the generalized
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Figure 2.6 Nondeterministic net — bota tl and t2 are enabled
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nets. These restrictions appear to be Justified in tftat many

(if not uost) actual systems may be modeled by the

restricted nets.

Definition 2.11 A transition t T is live for marfcingjU.,

iff

Vp.K=>]Li =->3cr', /jl=>/x At- s s K

where S k is the enabling set forju.^.

If a transition is live, a firing sequence may always be

found which will allow it to be fired indefinitely often.

Definition 2.12 A marfced petri net M is live iff

Vt t € T ==> t is live for marsin^jUL,

In systems, liveness is often associated with the problem of

deadlock. Eacfc [36] has shown that liveness is equivalent to

the reachability problem; therefore, it is decidable.

Definition 2.13 A place p
t
- € P is conflict free iff

VjU^t, , t 4 , ..., t^ £ p.* A t;6S* ==>

~3t/ J i 1 A ty 6 s
K

For any marking, a conflict free place may not enable more

than one transition. In Figure 2.6, place p, is not conflict

free since botb t, and t 2
are enabled.

Definition 2.14 A petri net M is conflict free iff

Vp p €? -*> P is conflict free.
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A stronger statement concerning places is the following:

Definition 2.15 A place p is decision free iff

|»Pc[ =
JPc-J

= 1 •

Definition 2.15 A marked petri net M is a marked graph iff

Vp P €? ==> P is decision free.

A final property of petri nets may be defined:

Definition 2.17 A marking j± K is persistent iff

V|It6S A (/JLK->fJLJf
) ==> t€S

|
V t€CJ-

A persistent marking is one in wnicn an enabled transition

remains enabled until it is fired.

Definition 2.18 A petri net M is persistent iff

Vt t €T ==> t is persistent for/LL^.

The question of persistence is important in tne analysis of

petri nets and therefore we present a decidability theorem

for these nets:

Theorem 2.10 Given a k-bounded, marked petri net M, it is

decidable whether M is persistent.

Proof. Since M is k-bounded, its reachability set O(M) is

finite. For each /J.k £ construct the enabling set S k .

*.'

Tor each t t
- € SK determine S klt

where jX K=>f-t-k>» • If s km—
\

^S K - {t
t
-} , M is persistent.
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Note that all conflict free nets (and tnerefore all marked

graphs) are persistent. We next consider some aspects of the

petri net classes naving tnese properties.

1. Marfced Graphs

Marked grapns nave been extensively studied by

Commoner and Holt, among others [11,12]. Here we present

some pertinent results of tneir wort.

Recall from graph theory the following three

definitions:

Definition 2.19 Let D * <A,R> be a digraph with nodes a

and b. A .directed patn from a to b is a finite sequence

of nodes P = (c ,c,,...,cj such that c d = a, c,, = b,

and for all c<- with 0<.i$Ln c
t
Rc CM . If a = b, P is a

directed circuit .

Definition 2.20 A digraph D = <A,R> is strongly connected

if for every two nodes a,b£A, tnere is a directed path

from a to b and b to a. If there is an undirected path

from a to b, D is connected .

Definition 2.21 A component of a digrapn D is a connected

subdigrapn of D which is not a proper subdigrapn of any

connected subdigrapn of D.

The constraint on the input and output transitions to a

place mafces it possible to replace every place with a single

directed arc between its input and output transitions. In
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this way the petri net reduces to a digraph simplifying

analysis. The marfced *raph may then be more simply defined

as:

• Definition 2.22 A marked grapn M' = <T ' ,E' tjX> is a

three-tuple where

T' = T

E' : TXT —> {0,1}

where E(t • ,tj) = ^

\ if 3p 0(p,t
t

) = 1

A Hp.t;) = 1

otherwise

|LL' : E' ~>>J where

M-'Ce*,.) = f-Up„)

where e Cj'6E A -p„ « {t<-} A P*,* = {tj>

(Here we have synonymously defined the ed*e set

E' = {e^*} where tne edge directed from node i to

node j e<y€E' Iff E'(t;,tj) = 1

Additionally define tne togen count N as:

Definition 2.23 The togen count of a eraph is a function

N : P — >j\f where

If P&E then N(P) =2n(e:) for e<-

CM *"
^P

Figure 2.7 shows the graphical representation of a marfced

graph where the number of tofcens on an ed«e e*; corresponds

to |J.'(e t'/). The following theorems and proofs appeared in

CllJ:
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'l*ure 2.7 Marsed *raph. Note tnat tokens are placed on the arcs
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Theorem 2.11 A marking jx' Is live iff the token count

N > for every directed circuit in M.

Proof, i). Assume fX' is live and N(B) = for some

directed circuit B and e^- is an edge in tnat circuit.

By definition, a sequence (J exists which enables t
4

.

After firing jU'Ceij ) 1 and therefore N(B) 1 in

contradiction with the assumption.

ii). Assume N(B) > and tj is a node in directed

circuit B. If tj is enabled, tj is live. Otherwise let

t
t
- be a node in B such that e^j is in B. If t; is

enabled, fire it resulting in ty being enabled. If not,

continue to backtrack. Since the path length of B must

be finite in the directed circuit beginning and ending

with t : , this procedure must halt and therefore tj is

live.

This leads immediately to a corollary:

Corollary 2.11.1 A marking which is live remains live

after firing.

Theorem 2.12 A live marking is safe iff every edge in the

graph is in a directed circuit with token count

N(P) = 1.

Proof. Clearly, tne token count of any directed circuit is

constant. If N(P) = 1 then, the edses of the directed
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circuit must be safe. If N(P) K > l , by tne same

process as in tneorem 2.11 transitions in the circuit

may be fired until £ tokens appear on tne same edge.

Theorem 2.13 For every finite, strongly connected grapn G

there exists a live and safe marking for the

corresponding marked grapn M'.

Proof. By definition, each edsre in G must lie in a

directed circuit. Since G is finite, a finite number of

directed circuits exist. Therefore construct /-t' by

placing one tolcen arbitrarily on each directed circuit.

The conditions of theorems 2.11 and 2.12 are met and M'

is live and safe.

2. State Machine Decomposable Nets.

This class of petri nets has been studied by

Ramcnandani [9] . A. state machine is defined as:

Definition 2.24 A marked petri net M is a state macnine

iff

Vt t€T AttfPi'O > 0] A CKpj.t) > 0] ==> p (• = py

Vt t€T A[0(p
t
-,t) > 0] A [O(pj.t) > 0J ==> p,- = py

That is, Vt | «t| =Jt»| = 1.

This restriction results in nets which are functional

equivalents of finite state machines, hence the name state

52





machine. Note that state machines allow conflict i.e.,

nondeterminism.

Definition 2.25 A subnet M^; is a strongly connected

component of M.

Definition 2.26 A petri net M is state macnine

decomposable iff

3{M
(
*> ! ^Pt »P A Cfy^T A V^t M is a state macnine.

Several properties of state macnines may easily be snown.

Theorem 2.14 The token count N(M) is constant for a marked

state macnine

.

Proof. Assume N(M) = C and t t €T. By definition

|
#t

c
-

l

~ \*im\
M 1 • I»et (P,J **£ and {p^> = t

t
* with

N(p, ) = c, and N(p^) = c a . If t 4
* does not fire, tne

token count of p, and p 3 are unaffected by t 4
-. If t«;

does fire, by definition N(p, ) c,- 1 and N(p 2 ) = c^+ 1 .

Summing we have:

J.
N(p) = c, -1 + c 4 + 1 = c

,
+ c z

and the token count does not chance

.

Corrolary 2.14.1 Every marked state machine is bounded.

Proof. Since the token count N(M) is constant, the maximum

number of tokens at any place is N(M); therefore M is

bounded.
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3. Consistent Petri Nets.

An additional class of petrl nets are tnose for

which there exist consistent current assignments.

Definition 2.27 A petri net M is consistent iff there

exists a function
<J>

: T —> I such that

i. Vt^T c$(t<: ) = q>L
-

2. Vp€P £c£x Kp,t.) = 5d>x o( Pt tj)

where in the summation n = f^ .

The function cp is analogous to an electromagnetic flux and

the (pi's are referred to as the currents associated with

transitions t t
-. Note that part 2 of tne definition is an

expression of KirKhoff's Law. Part 2 requires solving tne

following set of linear equations:

'i','

|

CI",'

Cr*,*

•

*•' C

Cr*,« 4>, Co

Co 1'*

•

* J

Co". 4

i

4>»

where Cr and C are the incidence matrices for M.

If a non-zero solution exists, M is consistent.

Example 3. Consider the net in Figure 2.9.

Construct C E
=

l l

l

1

l

c« =
1

1

1

1 1
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Figure 2.8 Consistent Petri net
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Therefore M is consistent.

Tfte significance of consistency is that a consistent system

will cycle — given an initial marfcing jU.e , there exists a

firing sequence sucn tnatjLL. ~>f-l* A.n inconsistent system

will either consume tolrens and halt or produce tokens and

become unbounded. Tnese results are summarized in two

theorems by Ramchandani [8].

Theorem 2.15 A petri net M is consistent iff

-1 CT

Proof, i). Let <£>, Cfo • • • Cj>„ be the consistent currents of

the transitions of M. Let jLL^P,) = Cf> + <p + Cj> =C wnere

(p,» • • (p„ correspond to t
t
- . . . t n£pt

-«k . Then let
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C~ {t |t t a...} wnere the multiplicity of t^ inCJls
rr

equal to its current giving pLa =>]ULj . Since the sum of

tne currents into and out of a place is 0,

jj.#(p t
-) =]LLj(pi) and ]UU,= fXj . Therefore C"is a cycle.

cr
il). Let jU.=>M.. be a cycle. Then fjljp t

) =>jU (p
(

) . Let

fc, ,fca f .. . , fc„ be the multiplicity of transitions

t, , t 2 , . . . , t, £«p
t

and 1, ,1^, . . . , i A be the multiplicity of

transitions t, ,t a , ... t t^pc
« . Z*j =2lj . Then let

($(tj ) = *; if tj€*p
t

< and(J)(tj) = 1; if x
j
;&. • . This is

a consistent current assignment and therefore M is

consistent.

V

Theorem 2.16 A petri net M with a live, bounded margin*

is consistent

.

Proof. Since M is bounded, its reachability eraph Q(M) is

finite. Since M is live, taere exists a strongly

connected subgraph which contains jj. . Tnerefore, tnere

exists a directed circuit in the subgraph firing all

transitions. This is a cycle and therefore M is

consistent.

We conclude our description of petri net subclasses by

conslderine the hierarchical reiationsnips between classes.

In the sections on marfced graphs and state machines, it has

been shown tnat botn are contained within the class of

bounded petri nets. It is easy to show that the containment
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Figure 2.9 Bounded Petri net
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Figure 2.10 Unbounded, non-live, consistent net
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Figure 2.11 Petri net Hierarchy
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is proper. Figure 2.9 snows a net wnlcn is bounded but

neither a marked graph nor a state machine. The intersection

of the class of marked grapns and state machines are a

degenerate class we call sequential processes. Theorem 2.16

showed that all live, hounded marfced nets are consistent.

Once again, the containment is proper — Figure 2.10 is an

example of an unbounded non-live net which is consistent.

Finally note that all persistent or conflict free nets are

deterministic and therefore may be reduced to decision free

nets i.e., marted graphs. These relationships are summarized

in Fisure 2.11.
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III. STOCHASTIC PETRI NETS

To this point we nave analyzed petri nets on tne basis

of tneir structural caaracteristics. To utilize petri nets

for computing performance measures, it is necessary to

introduce the concepts of time and nonieterminism to the

basic model, tfe turn first to tne question of modeling time

in petri nets.

A. TIMED EVENTS IN PETRI NETS

An important concept in Section II was tne marking, or

system state, of tne net. Tne marking gives an instantaneous

description of the token content of each place in the net.

The marking was changed as a result of tne firing of a

transition, ife defined a firin* sequence as an allowable

ordering of transition firings in accordance with the rules

for enablinsr transitions. By controlling tne dynamics of tne

transition firing process, it is possible to analyze the

changes in system state as a function of time.

Several authors have addressed the question of adding

titling considerations to petri nets. Two different

interpretations have resulted from this work. Sifakis [37J

has proposed that once enabled, transitions fire

instantaneously. A delay is tnen introduced before tokens

are available at the output places for possible enablines cf

other transitions. An alternative view is tnat taken by

Ramchandani [9} and Zuberek [38], In their models, once
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enabled, transitions fire after a delay called the firing

tine. After the firing time is completed, t&e net changes

state by moving the appropriate tokens. These two

interpretations appear to be equivalent. We cnoose to use

the latter interpretation to conform to the usual notion of

a queueing service center.

We first consider the case where transition firings

occur at discrete time epocns *T?»Ta t • • • 'C, t . . • where T is

the instant of the nth firing.

Definition 3.1 The system state of a marked petri net M is

a function:

U:T~>fX

where T {f,»*fg»« •• #1^» •• •) »

and U(rn ) =H-*. ==>3 l&CI^) =JO/AjLL;=>fX^

U is a step function witn discontinuities at tnose instants

of time in which the system changes stats.

Definition 3.2 The firing time X of a petri net is a

function:

X:T—>R*

where Vt£ € T X(tj ) =1"t = x

By this definition, i£ is tne time required for a firing of

the transition t^.
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By specifying tne firing ti-ne function X, it is possible

to describe U(^). In this section we consider the case wftere

tne transition firing times x^ are constant for all

transitions. This restriction mates it possible to describe

a total ordering of transition firings for persistent nets.

In tne case of allowed conflict between transitions, It is

necessary to impose a priority scheme on transition flrines

to resolve tne conflict (that is, to mate tne firing

deterministic). This ordering amounts to a restriction on

tne firing sequences wnich are allowed. Those sequences (J

for which the ordering holds are termined feasible firing

schedules. Ramchandani has shown that for timed marked

graphs and live, safe, and persistent petri nets a periodic

feasible firing schedule exists. He additionally derived an

upper bound on the computation rate (cycle period) for state

machine decomposable nets. The bound is given by:

pmax = minCp^p^,^]

where D is the cycle time for each circuit in tne

corresponding net and is given by:

N(C £ )

j«i *

where N(C^) is tae toten count for circuit C^, xj is tae

sum of the firing times for the transitions in C
4
'

, and <J>£is

tne current associated with that circuit in a minimal

current assignment. Ramchandani also argues that this

formula can serve as a first order approximation where tae
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mean firing times *xj are substituted for tne deterministic

firing time x^ in tne formula. A slightly different

derivation of tne same result was made by Ramamoortny and Ho

[39] .

B. MARKOV ANALYSIS OF PETRI NETS

Researcn into tne behavior of timed petri nets to date

nas concentrated on deterministic nets with constant firing

times. As noted in Section I, tnis approach fails to account

for the randomness and uncertainty wnicn characterize actual

systems. We propose that nondeterminism be modeled

probabilistically in tne net. Our method differs from

previous wort by emphasizing the stochastic nature of the

system state (marfcing). In this way, it is possible to apply

the Snown methods of queueing theory to analyze tne

probabilistic properties of these nets which we call

stochastic petri nets. We introduce in this section two

sources of nondeterminism which will be modeled by tne

stochastic petri nets — random transition firing times and

the probabilistic firing of simultaneously enabled

transitions.

We first snow that if the firing time x for each

transition is considered to be a random variable rather than

a deterministic one, it is possible to analyze the toicen

content of the net as a stochastic process.
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Definition 3.3 The firing time X,; is an independent,

identically distributed, random variable such that

vti € T i;„ is the firing time for the nth firing of

transition t£ .

The requirement that I'L is independent and identically

distributed is necessary for our derivation of a Martov

chain representation for the net state space. In the case of

computer networks, Kleinrocfc [40J has investigated this

requirement which he has named the message independence

condition. This assumption is somewhat artificial in that it

implies, for example, that the time required to process the

sane message at two nodes is independent. This difficulty

notwithstanding, results for an analysis of the ARPA net

show some evidence for the validity of this assumption [41]

.

Applying the metnods of probability theory, tne firing time

distribution may be defined as:

Definition 3.4 For all t^T, if X<; is the firing time for

S£(x) = P[X
t
-£i]

In the usual way we define the density function:

Definition 3.5 For all transitions t£ 6 T, the firing time

density function is given by

s,;(x) = d/ii [S
t
(x)J = pU t

' = x]
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Likewise define the moments:

Definition 3.6 The ntn moment of tne firing time density

function is given by:

E[XJ - h"H (x)dx

and in particular fi[X-J - X
t
* = i/jx

c
is tne mean firing

(service) time*.

Tnese definitions mate it possible to model systems by

applying the appropriate distributions to the firing time

function. It is clear tnat the feasible firing sequences C
for a petri net are no longer deterministic. It is necessary

to consider now this nondeterminism can occur in the net.

Referring to Figure 3.1(a), it can be seen that transitions

t 2 and t^ are both enabled. With random firing times, the

sequences t2 tt^ and t^ttg, are botft possible. In this

instance the effect of the nondeterminism is unimportant to

overall system operation since the two processes are

independent at this point. A more interesting situation is

depicted in Figure 3.1(b). The transitions t^ , t$, and t^.

are in conflict. To analyze this type of nondeterminism it

is necessary to specify the branching probabilities for each

of the possible paths. There are several possible ways this

may be accomplished. For example, each simultaneously

* The mean service rate jLL is an unfortunate conflict in
notation. Due to its long standing use in the literature, we
will use this notation pointing out its meaning where
confusion might exist with the earlier definition of

marking.
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f- O-i

Y *0 -> <y-f

(a)

H>

(t>)

Figure 3.1 Nondeterminism in petri nets. (a)

independent processes, (b) transitions with conflict
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enabled transition may begin firing at once wltn tne

transition which completes firing first causing tne margin*

to cnange. Tne problem of determining vnicn transitions are

simultaneously enabled is a significant one. We can simplify

the problem by restricting our analysis to free choice

places.

Definition 3.7 k place p is free cnolce iff

A free choice place is one wnicn either has a unique output

transition or is the only input place to eacn of its output

transitions. This restriction ensures that a marking for p

will either enable all of its output transitions

simultaneously, or will enable none of them. With this

restriction, it is now possible to define tne branching

probabilities for the output transitions of a free choice

place.

Definition 3.8 The branching probability for a free choice

place p^ with p^» ~ {t
,

,

t

2 , . . . ,t „} is

\>ij - P[tj will fire ! t, , 1 2 , . . . ,t • are enabled]

such tnat:

<b<;j < 1

and

2b,;.- = 1 wnere n ^IpJ
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We mafce the assumption that these probabilities are

functions of the firing distributions for tne output

transitions only and in particular, that they are constant

and independent of the marking.

By allowing these sources of nondeterminism, the system

state may fee expressed as a stocnastic process.

Definition 3.9 Let U(-f), the system state of a petri net

M, be a random variable and a function of tine wnere

U(T) s O, (T),ua (r)»-«.»ull (-r)] such that Uj «) =pv (pp.

U( ) is a discrete state, continuous time stochastic

process described by the probability distribution:

Mfju-f) s p[u(r, ) »/-i,, u(-fi) =/Xj ,...,u(r, ) -jx„]

fJL^JUL^ (UL
n
€Q(M).

U(T) describes the manner in which the system moves

between states in the reacnabiiity set. It should be noted

that the distribution f^ (JUL*T) is equivalent to expressing

the probability that some feasible firing sequence <j exists

such that /X„->jLt . Therefore, it is possible to extend tne

definition of liveness.

Definition 3.10 A transition t €T is live for state U

iff

Vu 3a; &; ^So A p[c*,]>0 -*>

3a; ° ^°«A p[oy>0At
4
- €s,
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Theorem 3.1 For a live stochastic petrl net M with margin*

and initial marfcing fX €Q(M),

p[U(T) =JU.^] >

Proof. Assume p[U(-f) =fX^J = 0. Tnen tne probability tnat

(T
a firine sequence CT exists sucn mat [X =>l^i is zero in

contradiction with tne assumptions of Definition 3.10

and therefore M cannot be live.

We are interested in determining the conditions for which U

is a Marfcov chain, that is, when

p[&(rn4 , ) »juim< i o(r„) =/i.,, u(rnA ) -ja^ ....

,u(r.) «|XJ P[0(fn., ) -JUL^i ! U(rn ) -JULJ.

In addition, we are interested in determining the

stationary (time independent) state probabilities if they

exist. We first consider the case of state machine

decomposable petri nets.

C. CLOSED PETRI NET SISTEMS

To express the system state transitions as a Markov

process it is first necessary to derive expressions for the

arrival and departure processes for tne places in the net.

This may be accomplished by considering the net as a

collection of nodes, each of which has a well-defined

betavior, and in particular, for which the arrival and

departure processes may be expressed analytically.
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A node in a petri net is defined as:

Definition 3.11 k node n in a petri net is a subset of the

set {P|JT} sucn tnat

Vt; € T t£ €n <=*>

Vpj Py€*t
t
- <==> pj £n

A Vt K t<t€Pj* <==> t K 6n

Theorem 3.2 Tne node set [nj = n, , n 2 ,...,nn is a

partitioning? of a petri net M.

Proof, i.) Unt
- -{P^T}. By definition, every transition t

is trivially an element of some node n K . Assume tnere

exists a place pj such that p:^(n /t n
2 , . . . ,nj . By the

definition of a petri net, p.- has (at least) one input

transition t^ . Since t£ is an element of some node, by

Definition 3.11 p.« is an element of that node,

ii.) Vna ,n
fc
£[n] na - nb y n

fc f) nb = <£. Assume there

exists some transition t; £{na f| n b > . Let p, be an input

place to t
L
" and an element of na . Then by Definition

3.11 py is also an element of n b . Now let t^ be an

output transition to p; and an element of n a . ksain by

definition t K is also an element of nb and tnerefore

n a - n
fc

.

Likewise, assume there exists some place

Py €{hflLri n i>J« By lhe same reasonin? n^ = n^. Therefore,

the set of nodes defines a partitioning of M. QED.
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(b)

Flffure 3.2 Queueing nodes in petri nets, (a) partitioning of an
arbitrary net. (b) single place/transition node.
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Figure 3.2(a) snows the node partitioning of an

arbitrary petri net. Now consider tne single

place/transition node n
(

. Figure 3.2(b) is tnls noae with an

arbitrary marking. Since we have assumed that the transition

in tnis node is firing wnenever enabled, we nave tne

important result that this node is equivalent to a single

server queueing system.

The marking for p, which we have defined as tne state

element u, includes the tokens being fired or waiting to

fire. Two features of tnis representation should be noted.

First, all tokens are identical; no token classes exist.

Second, no queueing discipline is modeled in the system.

This places a restriction on the ability to derive analytic

solutions for the system.

To describe the operation of tne node, that is,

determine the local state probabilities PLU(T) = U J » it is

necessary to cnaracterize tne arrival and departure

processes. It is well Jcnown that the exponential

distribution is tne only continuous distribution for which

the Markov property holds. In addition, it has been shown

[33] that arbitrary work conserving queueing disciplines

result in equilibrium product form state probability

solutions for exponential firings. Therefore we assume the

firing time distribution S(x) to be:
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Definition 3.12 The firing time distribution for

transition t^ is riven by

S< (x) = 1 - expC-ju^x)

wnere tne mean firing rate isfi.^.

The requirement that tne queueing discipline be work

conserving means tnat no Knowledge of tne firing time

requirements is used in selecting tokens for firing. It is

clear from tne indeterminate nature of tne tokens in petri

nets that this is indeed the case and tnerefore we are

Justified in asserting that the Markov property holds.

Finally, it is necessary to determine the arrival

process for the node. In the case of closed networks (and

the petri nets we nave considered thus far), the arrivals

are made up of departures from other nodes in tne net. It is

assumed that upon completion of firing, the tokens

immediately enter their associated output places. Therefore,

the arrival process may be characterized as:

Definition 3.13 Tne arrival rate f\ for a place p • is

given by:

where J\ is the arrival rate for node n j , t ji is the

brancning probability tnat a departure from node nj

arrives at node n
L
', and m is the rank of [n] .
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Note that we nave not specified tne arrival distribution

itself. It has been snown by Burue's tneorem [42J and

several extensions (for example [3J ) , tnat in many cases trie

arrival process is asymptotically Poisson.

To summarize, we nave made tne following assumptions

concernine the petri net state transition process:

1. Firing times are independent.

2. Firine times are continuous and exponentially

distributed.

3. The queuein* discipline is wort conserving.

4. Nondeterministic transitions between nodes are

determined by constant branching probabilities.

5. There is no overhead in transition firings;

transitions fire whenever enabled.

In Section II we considered the class of state machine

decomposable nets and state machines. Figure 3.3 is an

example of such a net with its associated nodes.

Theorem 3.3 Each node in a state machine contains exactly

one place.

Proof. By definition, eacn transition aas a single input

place. Trivially then, there must be at least one place

in each node. Without loss of generality, assume there

exists a node with two places p, and p?
witn t

t
- £ p^ . By

implication, t<- £ p^. and therefore Pxj£»V in
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contradiction witn tne definition of a node. Tnerefore,

there is at most one place in each node. QED.

The next result follows immediately:

Corollary 3.3.1 The places in a state machine are

free-choice.

Since the places are free-choice, it is possible to

assign the branching probabilities to the output

transitions. These transitions are not multiple servers*

rather, they represent the possibility for tofcens vhicn must

be handled differently. It is necessary therefore, to create

composite places to deal with this requirement. The

resulting net we call the stochastic equivalent petri net

(SEN).

Definition 3.14 The stochastic equivalent net for a petri

net M is constructed as follows:

For every place p in P, assign a set itr, *7Ta
» • • »1Tn }

where n =
|p..| , Vt K € T I(lT|#t

fc
) = I(p-,tj), and if

Pt« It, ,t a,...,t rt >

fo(p;.t;) j=K
0(-7T f tJ = <

J ^ otherwise

In the associated graph, each edge from a transition in #p*

to the set {% ,-7T2 , • • • .*/£ > is joined by an arc and labeled

with tne appropriate branching probability.
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Figure 3.3 Partitioning of a petri net into a node set
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The SEN for the petri net In Figure 3.3 Is depicted in

Figure 3.4. Each node in tne SEN consists of a single place

and transition, with the branching probabilities occurring

at the output from the transitions. It is clear from the

definition that the SEN has the same properties of

boundedness, lireness, and consistency as the associated

petri net.

It is now possible to obtain the analytic solution for

the petri net fey treating is as a closed queueing networfc.

Theorem 3.4 The SEN for a state machine with a live

marking is ergodic.

Proof. By theorem 2.12, a state machine is bounded and

therefore tne state space (reachability set) is finite.

Lien has shown [43, thm 11J that the state space for

this class is strongly connected. Therefore, tne state

space is irreducible. Since it is finite, tne

probability of reaching some state, PIU^J, is greater

than zero. Therefore tne state space is recurrent and

non-null. By definition therefore, the state space is

ergodic and likewise the SEN is ergodic.

Thus, equilibrium state probabilities exist for the system;

that is,

P[0J - 11m P[U,rJ
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Figure 3.4 Stocnastic equivalent net for tne petri net
in Figure 3.3.
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This type of system was solved by Gordon and Newell [30J . At

equilibrium, tne derivative d/df(P[U,fJ) must vanlsn for

each state in the state space. Tftis allows the Global

balance equations for tne system to be written. For some

state U^ the rate of change of probability is determined by

the rate of flow of probability into the state due to

arrivals and the rate of flow of probability from tne state

due to departures. This may be written as:

d/dr(P[U,-T)J =P[(u,,ua uj) S S<«i >*jULi
-

2 2 Q( u
i

)jLL:b t:.Pl(u (f U-,...,U:-l,...,U-+l,...,uJ]
t«« J«l J J

=

where S( u
i')

is the unit step function given by

|f if u; =

[1 otherwise

These equations may be solved directly to within a constant

which may be determined by adding the requirement tnat

2P[0'J = 1

The product form solution to taese equations is [30]

PCOJ = P[(u,,u a ,...,u h )J = U/G(K)>ftx*'

wnere £ N(U) and tne x^ are solutions to equations

jUL^iC s 2 jULi»xj'bjt (i-lf2....,a).

The normalization constant G(£) is given by

»<*> - 2 ft *?

Algorithms have been found for computing G(K) and tne x^

[42],
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D. OPEN PETRI NBT SYSTEMS

Since the SEN for a state machine Has been snown to be

equivalent to closed networks of queues, tne question arises

as to wo.etb.er petri nets can be defined which are analogous

to open networks. Sucn a system may model tne occurrence of

external events such as tne arrival of interrupts.

Alternatively, tne model may represent a communications

system where messages enter and are removed from the system

at various points. To incorporate tnese external events.

Definition 2.1 may be extended as follows:

Definition 3.15 An open marked petri net OM is a marfced

petri net where

Vt^ € T #t; = <p <=> t^ is a source

t;« =0 <=> t
t
- is a sin*

It is assumed tnat tnese transitions may source or sinfc an

infinite number of tokens. The firing rates p.; are defined

as before except that yc -jJ^i is the mean arrival rate for

source t
(
' .

The possibility of external arrivals requires a

modification of the earlier arrival process definition.

Definition 3.16 The arrival rate p. for a node is *iven oy

It can be seen that Definition 3.13 is a special case

where yi =0 for 1 l,2,...,n.
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Several observations can be made concerning the ways in

which the properties of liveness, boundedness , and

consistency are affected by tne addition of sources and

sinks. First, consider tne case of marked graphs. Recall

that for a marked irraph, each place is conflict free. Figure

3.5(a) shows part of a marked graph. To meet the conflict

free requirement, source and sink transitions can be added

to the net only at existing transitions (with intervening

places being added). In Figure 3.5(b), a source transition

stl has been aided at transition t^ and in Figure 3.5(c), a

sink transition st2 has been added at transition t^.

Theorem 3.5 Liveness in marked grapns is unaffected by tne

addition of source or sin* transitions.

Proof. By iefinition, a source transition is live, and

therefore liveness is unaffected by the addition of a

source. Now consider a transition in the net t^ with a

sink transition/place pair added to the output. If t £ is

live, it can be fired by some sequence which will then

enable the sin* transition; therefore, the sin*

transition is live and liveness is conserved.

Theorem 3.6 A marked graph remains bounded after addition

of source and sink transitions except in the places

associated with those transitions.
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(b)

-^

->
T,

Figure 3.5 Addition of source and sink transitions to petri nets.
(a) marked srapn. (b) marked *rap& wi tn source stl. (c) marked
grapn witn sink st2. (d) state macnine net witn sources and sinis
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THis result is clearly true by the definition of transition

firing. It should be noted tnat the general results of

queuein* theory require that the places associated witn tne

source and sink transitions be unbounded (if exponential

arrivals and departures are assumed).

In terms of the dynamic operation of marked graphs, it

can be seen from Figure 3.5 tnat the existence of sin*

transitions has no effect. The source transitions operate by

controlling tne enabling of the net transitions to which

tney are connected; tney set an upper bound on the firing

rate of the transition.

In tne case of state macnines, the source and sin*

transitions are added to existing places In the net (see

Figure 3.5(d)). Tne nondeterminlstic nature of state

machines results in changes to the properties of the net

after tne addition of tne sources and sinits. For example, if

a sins transition is added to a live state machine, the net

could eventually terminate since the sink must eventually

become enabled resulting in tne loss of a token to the

system. When sources are added, the net will become become

unbounded. Since tne source can be fired arbitrarily often,

the token count of the output place to the source can become

arbitrarily large.

By generalizing the closed network queuein* model

developed in the previous section, tne solution for state

machines with sources and sinks may be obtained. Once aeain,
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the net is transformed into its stochastic equivalent. A

sinK is added to a node J by adjusting tne branching

probabilities of tne transitions in J so that the

probability of departure from tne system at node J , P[d J,

obeys:

PUJ s 1 - £ b-
t

- where n is |t
4»|.

A source is added to node J by inserting an ed*e directed

into the place in j and labeled with the mean arrival rate.

Since it is possible for the net to become unbounded

after adding sources and slnfcs, it is necessary to require

that fj < fJ-j for every node in the SEN to ensure that the

net remains ergodlc.

Once asrain, the solution involves writing tne global

balance equations for the system, i.e.:

U; 2 ? [&t'J (rate of flow from U; into Uj )

PCtJy] (rate of flow out of Uj )

Bastet [32J has shown that the general product form solution

for this system is of the form

P[U] = Cd(0)f, (u,)f 2 (u a )...f n (u n )

where C is the normalization constant needed to ensure

2 *t&iJ 1 •

d(0) is an expression for the exogenous arrival

rate,
n

d(u*) rjy for Poisson arrivals at constant rate /y£;,
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and f,;(u,;) is a function of tbe queue discipline.

For FCFS.^Ui) = I/jll- f( f. »L£L

E. CONSISTENT PETRI NET SISTEMS

Tne nost general petri net class we consider is tnat of

live, bounded, and consistent nets. The solution to this

class proceeds identically to tnat used earlier. Tne net is

first transformed into its stocnastic equivalent net form by

tne method of Definition 3.13. Figure 3.6(a) snows how an

arbitrary node in the petri net is transformed. Note that in

the resulting node 12, two places are required as input to

transition t^ and tnerefore this node does not model tne

simple queue/server pair which was seen earlier for state

machines. Another possibility for a SEN node is that the

transition has multiple outputs with branching probabilities

b(.* all equal to 1. These two situations are shown in Figure

3.6(b). It has been shown [44j that these types of nodes

(also referred to as Join and fort nodes) do not satisfy

local balance and therefore product form solutions do not

exist for this class of nets. However, since the net is

bounded, by the results of Chapter II the reachability set

(and state space) is finite and therefore the Global state

equations can be solved numerically [45J

.

In the case of consistent nets with sources and sinics,

it is possible for the net to become unbounded since the

sources may fire arbitrarily often and therefore finding tne
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o

(b)

Figure 3.5 Transformation of petri nets witn forts and
Joins into SEN. (a) Arbitrary node transform,

(b) Join and font nodes.
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solution to the global balance equations becomes

intractable. In tnis case, approximation tecnniques sucn as

aggregation or the iiffusion approximation [46] must be

resorted to. Tne applicability of tnese tecnniques to petri

nets is an open question, but one which bas the potential to

extend the modeling power of petri nets to more interesting

systems.
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IV. CONCLUSIONS

Tnis tnesis has addressed tne problem of computer system

performance analysis through the use of the petri net model.

The model has wide applicability to tne analysis of both

hardware and software systems, particularly those which

exhibit concurrency or asynchronous operation. Due to tne

power of the petri net approach, it is necessary to restrict

the structure of the nets resulting in a hierarchical class

relationsaip between petri net types.

The classes of sreatest interest in system modeling are

marked grapns, state macnines, and consistent nets. All

three of these classes were shown to have the properties of

boundedness, liveness, and consistency which are useful in

the verification of computer system correctness. Of tne

three classes, the class of consistent nets is the most

useful in modeling in tnat it can represent tne greatest

ranee of possible systems — and is also the most difficult

to analyze mataematically.

It was seen that the general problem of reachability,

and the set of states in which a marked petri net could

enter, was a primary consideration in the analysis of tne

nets. In particular, an algorithm was presented for

determining tne state space for the class of bounded petri

nets.
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By deflninr the firing times for the transitions in the

net, it was possible to extend tne analysis of petri nets to

their dynamic execution. Random firing times allowed tne

nets to model lata dependent events. This concept led to tne

identification of nondeterminism in tne petri net execution.

Petri nets with random firing times were shown to be

analogous to closed queueing networks. A major difficulty in

this approach is the inability to model queueing disciplines

in the places. However, if exponential firing is assumed,

the analysis can be conducted without detailed Knowledge of

the structure of the queue. In this context, the stochastic

equivalent net was introduced as a method for demonstrating

the correspondence between petri nets and queuein* networks.

This permitted tne state probabilities to be determined

through the Jcnown techniques of queueing theory.

The definition of petri nets was extended to allow for

events which taice place external to tne system itself.

Again, the resulting stochastic equivalent net corresponds

to a queueing networt — in tnls case the open networft

model.

It appears tnat this approacn to petri net modeling can

utilize more of the recent results of queuein* network

theory. For example, solutions tiave been found for state

dependent routine (branching) probabilities, and state

dependent arrival and departure rates. Additional woric is

required to determine if the use of petri net based
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stochastic models simplifies the problem of reducing system

design criteria and parameters to a form wnlcn permits tne

application of queueing networlc techniques.
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APPENDIX A

LIST OF NOTATION

&£j probability that transition j will fire *?iven

tnat place i enables transitions t jf t2t ,tn

Cj input incidence matrix for a petri net

C6 output incidence matrix for a petri net

B(t^ f tj) the set of edges in a marked rraph between

transitions i and j

c|)(t) a current assignment for a transition in a

consistent net

F((J t t) the firing function for a transition t and

state U in a petri net

Fc tne total mean arrival rate at node i

I(p t t) the input function for place p and transition t

M a marfced petri net <P,T,I,0,/j>

M' a marfced graph <T',E',jul'>

n(p) the marfcing function for a marked petri net

(section 2)

n. the mean firing rate for transition i (sec 3)

N a petri net <P,T f I,0>

N(P) the tofcen count for a set of places P

0(p,t) the output function for place p and transition t

P the set of places in a petri net

77 a composite place in a stocnastic equivalent net
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0(M)

R(T)

P
<X

S*

S(x)

s(x)

T

?

W

the reacnability set (space state) for

petri net M

tne reacnability set for a vector addition

system V

tne computation rate for a discrete time petri net

a firing sequence ( t,

,

t z , . . . ,t n )

tne enabling set it, , t^, . . . , t^} enabled by

marking fX K

the transition firing time distribution

tne transition firing time density fuction

tne set of transitions in a petri net

tne state of a petri net (u, 9u z , •• . ,u n ) with

marlcin* fJL-k

a vector addition system <d,W>

the vector set in a vector addition system
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